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ABSTRACT

An analytic and coeplete solution of Einstein's field equations
without the A-term is ﬁresented'for a dﬁst-filled universe (p = 0).
The solution is stationary and inhomogeneous and does not contain
any qlosed time-like lines. Also some of the properties ofrthé |

solution are studied,




INTRODUCTION

The purpose of this paper is to present an analytic and complete
solution of Einstein's field-equations for a dust-filled universe
(p >0, p = 0) without the cosmological A-term. The solution is
inhomogeneous and stationary, with cylindrical symmetry, so it will
not be found appropriate in discussions of observational cosmology;
but its existence may give reason to hope that there may also exist
non-stationary solutions which avoid the singular epochs found in
ta}e Ejriedman solutions and other related cosmological models. The
solution presented here has the fufther merit that it does not contain
any closed time-like limes. All known solutions of Einstein's field
equations for a dust-filded universe geem to suffer."from some
undesirable features. Qonsider firststhe stationary, solution. The
spatially homogeneous solutions of Eimstein, Gﬂdel(]&) , Ozsvath and

Sghilcking 2 , and Ozsvatfh(B)

all require a non-vanishing cosmological
Arterm. The inhomogenecus solution of Lanczos (%) and van Stdckmn(s)
(which has recently been re-discovered by Wright(s)): although it does
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not require a cosmological term, nevertheless contains closed time-
like lines as in GYdel's universe. Further, as pointed out by
€))

Shepley ’ the‘solution has a singularity at a finite proper
distance from the axis 6f symmetry where the matter:density and
scalar curvature become infinite. Ehlers(e) has shown how one can
épna;ruct all solutions with A = 0 for distributions of matter in
rigid rotation from static vacuum metrics, but the global properties
regarding the presence of singularities and closed time-like lines
have not been investigated. Of the non-stationary solutions with
vanighing cosmological constant, the singular epochs in the Friedman
homogeneous and idotropic solution; are familiar, and Shepley(7)
has ghown that a large ¢lass of closed, homogeneous ;non-isotropic

solugions also involve gingular epochs, while»Hawking(g)

shows that
qll‘qolutions which at some epoch differ from the open Friedman

mode} in sufficiently small but otherwyise arbitrary ways have, like

. the Friedman model itself, evolved frem a singular beginning. We .
lgavq as a problem for further investigations to decide whether the
present example is entiyely exceptional, or whether it is am esﬁééially

s;mpge limiting case foy some signifigant class of non-singular

cpsmqlogies.
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1. Statément of Results

The solution given in eqs. I.1 - I.5 below has the following

propefiies.
1) It is cylindrically symmetric.

2) It is stationary but the time-like Killing vector is not

the velocity-vector of matter.

3) Defined with respect to velocity vector of matter, shear
and rotatioh do not vanish but the expansion vanishes. Thus unlike
the gase.of Lancgos-van Stockum and Ehlers solutions the motion is
non-rigid.

4) It does not contain any closed time-like line.

+3) The space is complete,

6) The solution is open in all spatial directioms, i.e. it

extends to infinite proper distance in all directioms.

/) Matter everywhere moves in circles about the axis of

symmetry.,

8) The solution is spatially inhomogeneous and the density as



well as the kinematic quantities rotation and shear tend to zero as

one goes to arbitrarily large distances from the axis of symmetry.
Proof of the non-obvious statements will be gilven later.

The line element

-d52 = guvdxu'dxv = -dt:2 + e (dr + dz ) + (r - midcpz
+ 2mdedt _ I(1)

is a solution of the Einstein field equations

R - ARg = -KT I(2)
with
L vy | I(3)

X

where M is a unit time-like vector and constitutes a geodesic
cqongruence and p is the matter density with following values for
Vv and m:

2,%
=0-L (a+x s“-1}+—-3;.-4,u Arx) +1y 1)

lu:




2)’5
2

un---‘;‘-[(1+x2)5“-l-m(l"'x +-1-] I(5)

Here we have introduced a new variable x through

where a 1s a constant.

It is to be noted that by introducing the co-ordinates

*
JN

S:pjopiog
. o

Wwe can write

2 a2 o
ds = r (ds™)

2
0,2
where (ds )" depends only ytfp and does not contain a., Hence
. this constant can actually be reduced to a scale facror by a co-ordinate

transformation and does not play any further role,

The non-vanishing components of v# are

W 7 | 1(6)
2%

r(l -y



vt = __':'_.:_E.g . 1(7)

2
(l-y)
where
= ! =92 ,
y=m ar I1(8)

4 29 1 2

2.%
fA+x)*-1 I1(9)
a x4(1 + xz)% }

II. Computed Properties

A number of properties of the solution stated above follows
fyom gtraightforward computations, the results of which will bé given
here.

It can easily be shown from the expression I(9) of density
that the total‘b amount of matter (calculated per unit proper length
a],.gngn z-direction) is finite whereas the fotai proper volume (péi'\‘
urgit proper length in z-direction) is infinite so that the matter is

distributed with zero average density or in infinite dilutionm.

The vorticity vector. corresponding to the above v'e}_ocity is

defined by




v
-1 _ GHOBY, _B
o 2(-g)* ) A o g e
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It has only a component in z-direction, and the magnitu&e of

angular velocity is given by

2 z 1 -2v 1 :
W =g, W k.5 e . II(Z)

" The shear tensor

1 : .
. “Hw*vuﬁ’3“w+vfﬁwm I1(3)

has only non-vanishing components (ptf and cpq’r given by

% 2
T _ ( )% -2y i(l + x%) 1}’ 11(4)
v 2y X (1 + x )%
2.5 .
qq’trk - _.% ta L1 :zc )* +1 @ I11(5)

- From this one gets

; .q;z -‘v: - _1_. '2‘1’1(1 + X l% }4 11(6)-
of 2a2 x (1 + x ) »

From the above expression it follows that

Wp + ¢ = 20f 11(7)



It may be noted that as r + ®, p vanishes more rapidly than (pz

and a?.

We give below the components of Riemann tensor computed in an

orthonormal frame. We write

2

&
"

W2+ W+ D+ WP - g,

where

By ™ diag(+ 1,+ 1,+ 1,-1) ' 1I(8)
and

u} = eQr. dr

u} = eq'. dz

a? = r ., de

& = dt - mdg I1(9)

We compute the curvature tensor using the methods described by

(10
Misner( ). Referred to above orthonormal frame, it has the following

independent nonvanishing components
-2y

- - n
Rpgpp = e - ¥

(19) Migner, C.W., J. Math. Phys., &, 924 (1963).
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'
busto = S G + W0y - )

.2
= e-z‘I’ % Y __
R1010 )
r
24
R2323 r
- -N'x_ '
Ry320 v
-y L 2Y
R3030 = ¥ z° I1(10)
It will be noted that all comﬁonents go to zero as r-3/2 as

r - o, The proper radial distance rp out to a radius r goes as
rreqﬁr = Kr3/4 for r 4 », K being a constant. Hence we see that

as 1 =, all components fall off like rp'z. This is significant
in this frame since, with each guv = +1, one sees that every invariant
polynomial in RuuaB will also vanish as r 4 o, In other frames

where gu” depends on r the behaviour of curvature invariants is

not easily deduced from that of curvature components.

Finally we compute .the c-energy gcalat as introduced by Thorne(ll)
for qur system. At a pgint (trzg) it is defined as
A A,u

U= %(1 by II(11)
b |E2]

(11) . Thorne, K.S., Ph.D. Thesis. Unpublished, Princeton University

(1965). It should be noted that this definitign is slightly
different from and is superior to that given in Thorne, K.S.,
Phys. Rev. 138, B251 (1965).




where A’u is the gpace-time gradiant of the area A of the
invariant surface passing through the point and consisting of the
points (t,r, z + o, ¢ + B) where O s g <1, 0 < B <2 and

]Ezl is the length of the standard "translation' Killing vector at

that point, For our metric, we have
- L
U= - e Vgp 4 -‘215}2] I1(12)

where we have introduced

q=r1> - m ' II(13)

=

As r wo, U

III. Analyticity

Using the metric components from Eq. I(1) one computes

(-g)% = reZ\I! III(1)

This metric is consequently singular at r = O where (-g)% =0,
but is analytic for r > 0 where each of the metric components
2 2 2
r -m, m and e‘w'is-analytic and where (-g)% > 0., We show then

that qhis r= 0 singularity is spurious (removable) by interpreting

trpz as cylindrical co-ordinates; that is we introduce

11
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new co-ordinates TXYZ by the transformation

t = ¢t

Z = z

1II(2)
X = rcos g
Y

r 8sin ¢

and discuss analyticity in the new co-ordinates. The Jacobian of
the transformation is just r, so the metric remains analytic in
the region r2 = Xz + f,lzv > 0 and we need consider in detail only the
neighborhood of r = 0. To transfo;'m Eq. I(1) to these "rectangular"
co-ordinates it is most convenient to write

dsz = [-'dt:2 + dr2 + dz2 + rzdcpz] + 2dt(mdep) - (mdq:)2

+ 2Y . 1yl + dd II1(3)

where the quantity in square bracket is, by a familiar computation,
analytic (even flat) in tXYZ co-ordinates. We show now that the
remaining terms contribute analytic functions to the metric components
as is,,obvious for the temm (eZ\Il - 1)dz2 (which contxibutes (eZ\I'_ 1)
1 . . 02 2 .2 .,
to. gzz) 8ince e ‘ is an analytic functionof r =X + ¥ , and

hence of X,Y. We next note thai:
rdr = XdX + YdY

and
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rldp = -YOX + XdY

are analytic differential forms, so the analyticity of the contributions

from

2dt (mdg) = 2% at(rdp)
r

and (tm:lq:»)2 - (%)z(rzdcp)z follows from that of m/r2 (which it is
r
very easy to show from the expression for m). Similarly from

(eZ\Il - l)clr2 = [(ez‘I’- 1)/1:2](1:}11')2

ong gets analytic contributions since (eZ‘I’ - 1)/1:2 is an analytic

function of X and Y for all X,Y.

The determinant of the transformed metric is just -e"‘l,:#o 80
that qontravariant components are also.everywhere analytic. The

velocities in (XYZt) co-oxdinates are given by

Y(y/x)
"(1-(" rzg
1-y)

Y Xfx/rz

VE = 2 %

(1-y)

vt =l o m(y/r)]
a - yz)}i

ITI(4)

2

Since - ({') is an analytic function of X,Y and x sh—z(xl 4+ Y") and

a
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dm x
(1 +x3)% +1

(x = %T)

is less than unity for all finite x and hence all finite X,Y we

find from Eqs. I(6) and I(7) that v¥4 remain analytic for all finite X,Y.

Since %% <1l we have m <« r and hence rz - m2 >0 for all

r, a fact which will be needed later.

The precdeding calculations are given in such meticulous detail-
because such computations do not appear in most texts, and the results
2 YA\ 2 : o2
(that m/r" and (e~ - 1)/r" need to be analytic function of r)
are pot obvious without;computations. There is no general method -
for asserting differentiability of a metric except to display it in
a co-ordinate system where the components are differentiable and

where (—g)% > 0.

V. Completaness

"

In this section we show that our space is complete, i,e, every
geodesic has infinite length in both directions;» for null geodesics
we have to measure the length by means of an affine parameter. The
problem is easy essentially because of the high symmetry involved so
that we have a large number of constants of motion., If we take as

Lagrangian for the general equations
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a’
L=%,q o (1)

where ) 1is a parmeter which can be taken as path length s for

non-null lines, we get the following constants of motion

dt
E -Pt, d_»-m

~
Slg

2y

st e " dz/d)

dt

o L2 2 dy
t=p = (" -m) Py

dr,2 dz, 2 2 2, ,dwo,2
e = --(:;‘--)\'5)2 + eZ\II {("ﬁ') + (‘a‘i) }1"' (r' - m )(I;f)
+ 211'IQQ'£1'E Iv(2)

where E, 4, Pz can be interpreted as energy, angular momentum and

momentum along z-direction for a particle of unit mass. We have
e=0,+1
depending on whether the geodesic is null, space-like or time-like.

We can rewrite the above relations as follows

E_E+m&-m2E=un+E(r2-m2)
d\ 2 2

r o
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do _ 4 - mE
da 2

| dz _ -2V
dx 'Pz

’ 2
1 dr -2 - E -4y 2 '
| L ‘I’[E -e+-g’———22)—]+e \I&,z wv(3)
r

| The last equation can be re-written as
5GP +V_ (1) = 0 V(%)
with a suitable definition of Veff(r).

It is to be noted that we must have £ = 0 for a particle

passing through origin.

iThe last of the Egs, IV(4) is particularly easy to understand
as it resembles the motion of a particle in a potential well. If we

look at the behaviour of - ¥ we see that for large r

Hence if .,Bz.‘#o, V@ff(r) becomes positive for sufficiently
large. r. Hence motion glong r-co-ordinate will be bounded so that
there will be a value of r corresponding to all values of ). Again

aince motion of r 1is bounded we find that
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where A 1is a constant depending on the particular geodesic. Hence
in g-direction also the particle can ;scape to infinity only at an
infinite value of )\ 8o that with respect to z-co-ordinate the
geodesics can be continued for all values of A, 8Similar arguments
hold for other co-ordinates. It is to be noted that even for particles
passing through origin there is no singularity involved as hori‘ L=0

and m/r2 is finite at origin.
Next we take up the case P.z =0, Inthiscase as r 4@
() ~ -rf

veff

sv that

This shows that infinite value of r is reached only when

A = o, The other equations show that as A and hence 1 4=, :—;'
and do -+ 0 80 that with respect to these co-ordinates also ')\

“dA

can be continued to infinite value. Hence we see that in all cases
the ggodesica can be continued for all values of the path parameter.

wee the apace is complete.
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V. Abgence of Closed Time-Like Lines

If the space contains closed time-like lines then .t will. = -

“> be & periodic function of the parameter ) describing the line.

-In such a case we must have maxima and minima of & as function
of )\ 8o that there will be points where ( ) will be zero. At

such a point we will have

ds 2 _ axk dz

2

+ 2 - u @D >0

2% .
as both e and (r2 - mz) are positive for all values of r. Hence

at such points the line is no longer time-like. Hence our space

dqes)not have closed time-like lines.

VI, Characterization of the Metric

In this section we shall try to charactérize our solution by its
Killlipg vectors. In the following, we do not distinguish between

vectoxs % and their corresponding differential operators related by

X = x4 -9 | VI(1)
ax2



A basis for Killing vectors for our space are the following

three vectors

=2
T =3¢

Z = 3/3z

=2
o ™ | VI(2)

Each of them satisfies Killing's equations

+¢ . =0 VI(3)
which reduces to

AF Y

@(3 guv VIi(4)

if Eﬁ is the vector a/axB. If we now try to look at the problem from
a more general point of yiew and try to investigate infinitely long
cylindrical systemswhich are stationary, the above are the natural
Killipg vectors for such a system. Since the Killing vectors commute
with each other, we can choose co-ordinate axes tgz 8o that the Killing
vectors poiné along them. In such a situation the metric components will
depend only on the fourth co-ordinate r. If we impose the following
reflection symmetries which are appropriate to an infinitely long
cylindrically symmetric system, which is rotating, we can, with one

further restriction on Bre> arrive at our form of line-element,

We impose two reflection symmetries. The first is z - -z,

The second is the simultaneous reflection t o -t and
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P - =P - The first one eliminates all cross terms in g. For

consider the term By and make the transformation 2z' = -2z, other

co-ordinates remaining same. This gives

rz re

But from the reflection symmetry

Hence 8., = 0. Similarly using the other symmetry all cross terms except

the one in ¢ - t are eliminated. Hence our metric takes the form

2 2 2 2
gttdt + grrdr + gzzdz + gwd(p + qu)tdcpdt VI(5)

where each of the components depends only on r. Now by a simplescale

transi»rmation for r, we can make 8.p = 8

2z’ This does not change any

of the symmetries and hence leaves the above form unchanged. Next we make

the simplifying assumption that Beg = -1.

s 2y
nece caiiin = g =e £, = m
Hg g grr ‘”‘Bzz ] 6t¢ >

_dsz = eN’(dr2 + dzz) + gwdcpz + 2mdepdt - dt:2 Vi(6)

Now. the field equations give

g =1 -m
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Hence we get

-dsz = ezw(dr2 + dzz) + (r2 - mz)dcp2 + 2mdepdt - dtz

vIi(7)

Even with this form of line element, there are two solutions of the
fieldﬁequations. If we use co-moving frame we get van Stockum's solution
which represent matter in rigid rotation. If we employ our form of
energy-momentum tensor we get solution for matter in non-rigid rotation
invariantly distinguished from van Stockum's solution by the presence of

shear,

An invariant way ofzrestating our. special condition 8p ™ -1

is to demand that the time-like Killing vector T has a constant

magnigude,
T.T=-1 Vi(8)

A constant value of T.Ty implies that that congruepce of curves to

which the time-like Killing vector is tangent is a geodesic congruence..

At may be remarked that if we relax the conditipn that g __ be
a.constant, we will get @ family of solutions, getting in general two

solutions for a given choice of the function gtt(r).

We sum up the contents of this section by giving below the conditions

that uniquely lead to our form of the metric.
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a) There exist three commuting Killing vectors T, & £Z.
b) Our system has reflection symmetries appropriate to a rotating
cylinder of infinite length - i,e, it is invariant under the following

conditions: (&,x,9yz) &» (-ﬁ;!,(pq;'l)y;p (t;"i@i‘l)-' - (3%,7,-0,8).

e) By * -1,

d) The system is in non-rigid rotation, i.e. shear {s present.

VII. Co-moving Co-ordinates and Cosmology

One can transform the line-element I(1l) to a form in which the
velocity-vector is V¥ = 6“’0 (co-moving frame). In this system, the
metric éxplicitly involves time and is no longer stationary. It has

the fgllowing form in the co-moving system

2 2

2“[’+ £ . 1 2 yl‘}dr2 + ez‘I’dz + (1'2 - mz)d(pz _

a 1l +x

-ds® = -at? + {e

VII(1)

2 (§)3/2

a+ xz)% (r - my)r?‘tdrdqp + 2(r/ay)95(ry - m)d(pdt

+
Although the expansion vanishes the non-vanishing shear would in this

solution give rise to a Doppler shift in the frequency of light emitted .
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by a particle and received by another - put in another way the non-
stationary nature of the metric in the co-moving system would cause a
spectral shift. However this Doppler shift would in general be strongly
anisotropic unlike the actually observed more or less isotropic Hubble
red-shift. We do not therefore propose the solution as a model of the
obggr!ed univefse but as noted earlier we can hope to build singularity-
free dynamical model from this. This solution further emphasizes that one
can construct anti-Mpch metrics without taking HeCourse to the A-term

or introducing unphysical situations.
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